
ВЕСЫ АВТОМОБИЛЬНЫЕ ТИПА RW-S, -L

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ

ОГЛАВЛЕНИЕ

ПРЕДИСЛОВИЕ МЕРЫ ПРЕДОСТОРОЖНОСТИ		
МЕРЫ ПРЕДОСТОРОЖНОСТИ ГЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ		
ОБОЗНАЧЕСКИЕ ЛАГАКТЕГИСТИКИ ОБОЗНАЧЕНИЯ И ФУНКЦИИ		
овозначения и ФУПКЦИИ	······································	
1. ОБЩИЕ СВЕДЕНИЯ	4	
2. РАЗМЕРЫ ВЕСОВ И СХЕМЫ СОЕД	[ИНЕНИЯ4	
3. ДИСПЛЕЙ	7	
4. КЛАВИАТУРА	5. УКАЗАТЕЛИ ДИСПЛЕЯ7	
6. ТЕСТИРОВАНИЕ	7	
	вателя	
7. ПРОГРАММИРОВАНИЕ ФУНКЦИЙ	Í9	
8. КАЛИБРОВКА ВЕСОВ	10	
8.1. Установка наибольшего предела взвешива	ания (НПВ)	10
8.3. Выбор рабочей точки для калибровки		11
8.5. Калибровка нуля		I I 1 1
ГЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ		
ХАРАКТЕРНЫЕ НЕИСПРАВНОСТИ І		
ПРИЛОЖЕНИЕ 1	13	
ПРИЛОЖЕНИЕ 2	16	

ПРЕДИСЛОВИЕ

Благодарим за покупку автомобильных весов типа RW-S, -L. Просим ознакомиться с настоящим руководством прежде, чем приступить к работе с этими весами. Обращайтесь к нему по мере необходимости.

Весы автомобильные типа RW-S, -L производства фирмы CAS Corp. (Корея) относятся к электронным тензометрическим весам обычного класса точности. Они предназначены для поколесного взвешивания автомобилей, а при комплектации несколькими платформами - для их поосного или помашинного взвешивания; в частности, эффективно их применение для выравнивания нагрузок на каждую ось по длине автомобиля во время его загрузки или для регистрации съезда/наезда автомобиля на платформу. Весы характеризуются следующими особенностями:

- Весы портативные, легко переносимые.
- Быстрая установка грузоприемных платформ под автомобили разных размеров.
- Регистрация нагрузки на каждое колесо или все вместе.
- Конструкция платформы из алюминия.
- Продолжительная работа от перезаряжаемого аккумулятора; встроенное зарядное устройство.
- Автоматическая подсветка дисплея при плохом внешнем освещении.
- Интерфейсный разъем RS-232C.
- Встроенные часы с указанием даты и времени.

Представительство фирмы-изготовителя: 123308, Москва, пр. маршала Жукова, 1, офис 523. Тел.: (095) 784-7704, факс: (095) 784-7747.

E-Mail: info@cas.ru http://www.cas.ru

МЕРЫ ПРЕДОСТОРОЖНОСТИ

Храните весы в сухом месте.

Не пользуйтесь для протирки дисплея и клавиатуры растворителями и другими летучими веществами.

Не подвергайте весы сильной вибрации.

Избегайте резких перепадов температуры.

Весы следует устанавливать вдали от высоковольтных кабелей, двигателей, радиопередатчиков и других источников электромагнитных помех.

Не нажимайте сильно на клавиши.

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Модель	RW-05S, L	RW-10S, L
Класс точности весов по МР № 76	IV / об	ычный
MO3M / ΓΟCT № 29329-92		
Наибольший предел взвешивания, кг	5000	10000
Наименьший предел взвешивания, кг	200	1000
Цена поверочного деления е, кг	5	10
Пределы допускаемой погрешности	± 5 (до 1000кг вкл.)	± 10 (до 2000кг вкл.)
при первичной поверке на предприяти-	± 10 (свыше 1000 кг)	± 20 (свыше 2000 кг)
ях: изготовителе и ремонтном, кг	, , , , , , , , , , , , , , , , , , ,	, , , , , , , , , , , , , , , , , , ,
Пределы допускаемой погрешности	± 5 (до 250кг вкл.)	± 20 (свыше 500 до
при эксплуатации и после ремонта на	± 10 (свыше 250 до	2000 кг вкл.)
эксплуатирующем предприятии, кг	1000 кг вкл.)	±30(свыше2000кг)
	±15(свыше1000кг)	, ,

Функции	Автоматичес	ская установ	вка нуля; ко	ммуникация полной мас-
	сы: пифров	илатформ с р	ия панных.	диагностика
	неисправнос	тей; дежурні	ый режим	диштостика
Разрядность индикатора	'	5 знаков вы	сотой 25 мм	
Тип индикатора	Жидко	кристалличе	ский (с подсі	веткой)
Тип измерения		Тензомет	рический	·
Диапазон рабочих температур			+ 50 °C	
Диапазон температур при транс-		- 30 ∼ ⁻	+ 80 °C	
портировке				
Влажность, %, не более			0	
Питание от сети через адаптер или	Частота 49 ~ 51 Гц, напряжение 187 ~ 242 В			
от перезаряжаемого аккумулятора				
Потребляемая мощность,ВА, не бо-	0,8			
лее			_	
Продолжительность работы от ба-	- 20			
тарей, час			_	
Средний срок службы, лет, не менее			5	
	RW-O5S	RW-05L	RW-10S	RW-10L
Размеры платформы, мм	340×310	340×600	340×310	340×600
Габариты, мм	458×536×60	718×566×60	458×536×60	718×566×60
Масса, кг, не более	21.8	35.8	21.8	35.8

Примечание: возможно изменение технических характеристик в сторону их улучшения.

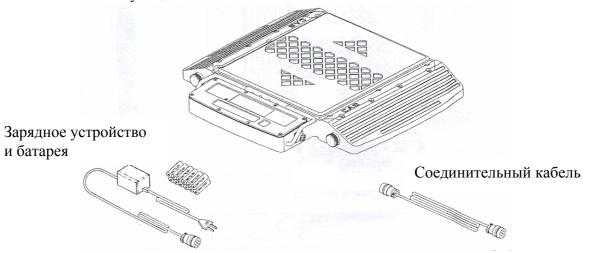
Следует иметь ввиду, что в данных весах отсутствует функция выборки массы тары из диапазона взвешивания.

ОБОЗНАЧЕНИЯ И ФУНКЦИИ

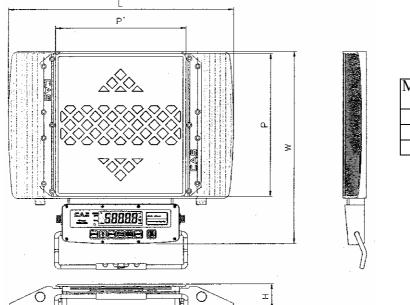
1. ОБЩИЕ СВЕДЕНИЯ

Весы состоят из одной или нескольких грузоприемных платформ с встроенным блоком управления. Нагрузка от находящегося на платформе колеса автомобиля воспринимается тензодатчиками, которые вырабатывают определяемый нагрузкой электрический сигнал. Сигнал передается в блок управления, где после его обработки выдается результат измерения нагрузки на платформу для визуальной регистрации. Помимо поколесного взвешивания, соединение двух платформ позволяет осуществить измерение нагрузки на ось, а если каждое колесо автомобиля (4 или 6) будет стоять на платформе, то суммирование нагрузок, выполняемое в блоке управления, даст полный вес автомобиля.

Весы имеют интерфейсный разъем RS-232C для передачи данных измерения на удаленный дисплей или на компьютер. Благодаря встроенным часам блок управления позволяет контролировать дату и время измерения.

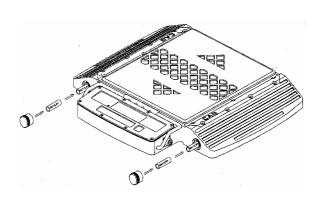

При работе в темное время суток, при плохом внешнем освещении, дисплей блока управления для удобства считывания данных подсвечивается сзади.

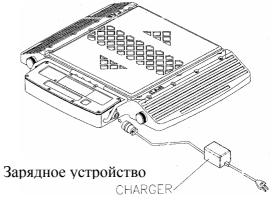
Площадка, на которую устанавливаются платформы, должна быть предварительно выровнена: неровности не более 3 мм, уклон – в пределах 1° .


2. РАЗМЕРЫ ВЕСОВ И СХЕМЫ СОЕДИНЕНИЯ

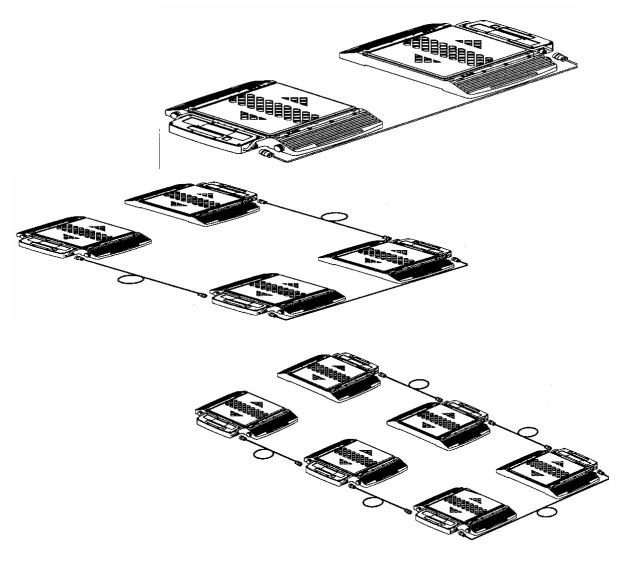
Каждая из платформ, представляющая собой корпус из алюминиевого литья в износоустойчивом и коррозионностойком исполнении, установлена на нескольких тензометрических датчиках, опирающихся непосредственно на площадку, на которой останавливается перед взвешиванием автомобиль. Платформы имеют пандусы из

твердой резины, которые позволяют легко съезжать и наезжать колесу автомобиля. Для удобства переноса платформ к ним прикреплены ручки. Далее показан общий вид весов и комплектующих.

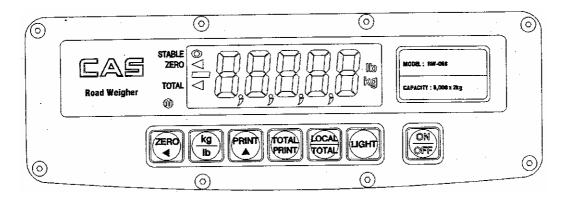

На следующем рисунке показаны размеры весов в мм.


Модель	RW-05S,	RW-05L, -10L
	-10S	-10L
W	458	718
L	536	566
Н	6	0

Сведения о тензодатчиках, установленных на платформе весов RW, даны в Приложении 2.


Гнезда для установки батарей закрываются крышками:

Зарядное устройство подсоединяется к разъему блока управления:


При соединении нескольких платформ (2, 4 или 6) следует руководствоваться схемами:

Необходимо иметь ввиду, что данные поколесного и поосного взвешивания (схема с 2 платформами) содержат неустранимую методическую погрешность. Она вызывается тем, что в такой схеме нагрузка на платформу не развязана от внешнего воздействия, которое оказывают другие оси автомобиля. Наличие сил трения, направленных горизонтально, приводит к тому, что при въезде колеса на платформу последняя получает не только вертикальную осадку, но и сдвигается в своей плоскости из-за ограниченной боковой жесткости платформы. Сдвиг может осуществляться как в направлении движения, если колесо относится к ведомой оси, так и против — если к ведущей. Для компенсации боковых усилий в весостроении используются специальные силовводящие устройства, отсутствующие в весах данной конструкции. Величина боковых усилий зависит от многих неконтролируемых факторов. Реакция платформы на боковые усилия и приводит к погрешности измерений. Данный эффект имеет место также и для схемы с 4 платформами, если она используется для потележечного взвешивания. Единственный способ устранить этот эффект — использовать схему помашинного взвешивания с 4 или 6 платформами.

Следует отметить, что предлагаемая методика поверки весов, заключающаяся в нагружении платформы гирями, никак не учитывает специфику поколесного, поосного или потележечного взвешивания.

3. ДИСПЛЕЙ

4. КЛАВИАТУРА

5. УКАЗАТЕЛИ ДИСПЛЕЯ

КЛАВИША	ФУНКЦИЯ
ZERO	Обнуление показаний в случае дрейфа
	при пустой платформе
kg/lb	Выбор единицы измерения массы (кг
	или фунт)
PRINT	Распечатка данных
TOTAL/	Распечатка полной массы груза
PRINT	
LOKAL/	Индикация массы груза на платформе
TOTAL	или индикация полной массы
LIGHT	Включение или выключение подсветки
ON/OFF	Включение или выключение весов

УКАЗАТЕЛЬ	КОГДА ВКЛЮЧЕН
STABLE	Нагрузка на весы
	стабильна
ZERO	На платформе отсутствует
	груз
TOTAL	Индикация полной массы
Lb	Показания массы в фунтах
Kg	Показания массы в кг

6. ТЕСТИРОВАНИЕ

При тестировании циклически выполняются следующие проверки:

TEST 1 – проверка кодов клавиатуры;

TEST 2 – проверка высвечивания дисплея;

TEST 3 – проверка тензодатчика и АЦП-преобразователя;

TEST 4 – проверка интерфейса RS-232C и принтера.

Для входа в режим тестирования следует при нажатой клавише LOKAL/ TOTAL нажать и отпустить клавишу $\boxed{\text{ON/OFF}}$. На дисплее сначала высветится надпись < CAS > и раздастся звуковой сигнал, а затем (после отпускания клавиши $\boxed{\text{LOKAL/TOTAL}}$) - надпись < tESt 1 >, которая автоматически переходит в < 0 >. После окончания какоголибо тестирования переход к следующему осуществляется автоматически или по нажатии клавиши $\boxed{\text{LIGHT}}$.

- 6.1. Проверка кодов клавиатуры
- □ Нажмите на какую-либо из клавиш, и на индикаторе высветится соответствующий код этой клавиши:
- 1 (клавиша LIGHT);
- 2 (клавиша LOKAL/ TOTAL);

	клавиша <u>TOTAL/ PRINT</u>);
4 (ı	клавиша <u>PRINT</u>);
5 (ı	клавиша <mark>kg/lb</mark>);
6 (ı	клавиша <u>ZERO</u>).
авт	Если была нажата клавиша <u>LIGHT</u> , то после высвечивания ее кода (1) весы оматически перейдут к проверке <test 2="">.</test>
	. Проверка высвечивания дисплея
	После высвечивания сообщения <test 2=""> на индикаторе высветятся все сегменты в течение некоторого времени, а затем устройство автоматически перейдет к проверке <test 3="">.</test></test>
	. Проверка тензодатчика и АЦП-преобразователя После высвечивания сообщения <test 3=""> на индикаторе будет высвечиваться оцифрованное значение текущего веса в единицах внутреннего разрешения. Изменяя нагрузку, проверьте, изменяются ли показания. Если они фиксированы или нулевые, проверьте подсоединение тензодатчика.</test>
	Для окончания текущей проверки и перехода к следующей нажмите клавишу $\overline{\text{LIGHT}}$. На индикаторе высветится сообщение <test 4="">, которое затем заменится на $<>$.</test>
6.4	. Проверка интерфейса RS-232C Соедините кабелем разъемы RS-232C устройства и персонального компьютера для передачи данных по последовательному каналу.
	Установите соответствующее значение скорости передачи данных 9600 бод/сек, для чего надо установить параметр функции $F11 = 4$; правила установки см. в п. 8.
	Запустите на исполнение программу передачи данных, как изложено в разделе «Обслуживание устройства».
	Проверка приема данных устройством выполняется нажатием на цифровой клавиатуре компьютера любой цифры, например 7. Она заменит в прежнем сообщении <0 $0>$ правый нуль: <0 $7>$.
	Проверка передачи данных устройством выполняется нажатием на клавиатуре устройства какой-либо клавиши. Следует проверить, что в прежнем сообщении < 0 $< 7 >$ левый нуль будет заменяться на другие цифры, соответственно коду нажатой клавиши. Одновременно на дисплее компьютера выводятся эти же цифры. Однако если нажать клавишу $\boxed{\text{LIGHT}}$, устройство завершит данную проверку и перейдет к следующей.
6.5	. Проверка принтера
	Итак, переход к этой проверке выполняется нажатием клавиши LIGHT, после чего появляется сообщение <test <math="">5>. Предварительно принтер должен быть подсоединен к устройству, и установлена принтерная функция $F02 = 1$.</test>
	Для проверки связи устройства с принтером нажмите любую клавишу, кроме клавиши LIGHT. При положительном результате проверки на индикаторе высветится сообщение <good>. В противном случае появляется сообщение об ошибке <err 06="">. Кроме того, принтер распечатает подтверждение правильности в форме</err></good>

TEST OK

8

□ Если при проверке была нажата клавиша LIGHT, произойдет выход из режима проверки и переход в режим взвешивания.

ФОРМАТ ПЕЧАТИ

1999. 11. 11	11:11:11
WEIGHT 1	0000 kg
WEIGHT 2	0000 kg
WEIGHT 3	0000 kg
WEIGHT 4	0000 kg
TOTAL	000 kg

7. ПРОГРАММИРОВАНИЕ ФУНКЦИЙ

Данные весы обладают несколькими функциями, которые должны быть настроены (запрограммированы) до вхождения в рабочие режимы. Для этого каждой из пронумерованных функций присваивается параметр, который и определяет характер действия данной функции. Эти параметры запоминаются во внутренней памяти весов.

Для входа в режим программирования следует при нажатой клавише LIGHT нажать и отпустить клавишу ON/OFF. На дисплее сначала высветится надпись < CAS >, и раздастся звуковой сигнал, а затем (после отпускания клавиши LIGHT) - надпись < SEt >, которая автоматически переходит в < F01 0 >. После окончания какого-либо тестирования переход к следующему осуществляется автоматически или по нажатии клавиши LIGHT. Двузначное число после буквы F есть номер функции, а число справа (здесь нуль, но может быть и другое) — это параметр функции F01.

Сначала высвечивается параметр, который был запрограммирован для данной функции в последний раз перед этим. Если его надо изменить, нажимают клавишу ZERO. С каждым ее нажатием параметр увеличивается на единицу вплоть до максимального, после чего параметр переустанавливается на минимальное значение, и можно опять выбирать нужный параметр той же самой клавишей.

Когда на дисплее высвечивается требуемое значение параметра, нажимают клавишу $\overline{\text{LIGHT}}$ для сохранения его в памяти устройства. Одновременно происходит переход к программированию функции, имеющей следующий номер в порядке возрастания. После программирования функции с максимальным номером (для весов RW – это функция F14) устройство переходит в режим взвешивания.

В таблице приведена сводка всех программируемых функций:

Но-	Наименование	Пара-	Результат
мер		метр	·
F01	Единица измере-	0	КГ
	ния массы	1	фунт
F02	Использование	0	Персональный компьютер или выносной индикатор
	RS-порта	1	Принтер
F03	Автоматическая	0	Без обнуления
	установка нуля	1~9	Каждая единица параметра соответствует допусти-
			мому дрейфу в 0,5 дискретности d
F04	Цифровая	1	Малая скорость колебаний нагрузки
	фильтрация	~ 9	Большая скорость колебаний нагрузки
F07	Защита данных	0	Результаты измерений не сохраняются
		1	Результаты измерений сохраняются при внезапом
			отключении питания

F10	Номер устройства	00	Код устройства в локальной сети вводится при
		~ 99	включении устройства в систему
F13	Количество плат-	1 ~ 6	1; 2; 4; 6
	форм в весах		
F14	Дата и время	0	не вводятся
	_	1	формат 10 апреля 2000 г. в 17 часов 23 мин 00 сек
			есть С1 00
			C2 04
			C3 10
			C4 17
			C5 23
			C6 00

8. КАЛИБРОВКА ВЕСОВ

Процедура калибровки выполняется в следующих случаях:

- при первой установке весов;
- при изменении места эксплуатации весов из-за наличия широтного эффекта;
- после замены какой-либо части весов;
- при обнаружении какого-либо дрейфа показаний;
- при высвечивании на дисплее сообщения об ошибке <Err 26>.

Калибровка заключается в циклическом исполнении операций, в которые включается собственно калибровка нуля (п. 8.4) и калибровка коэффициента усиления схемы преобразования исходного сигнала в результат измерений (п. 8.5), а также предварительная установка ряда числовых параметров, определяющих калибровку: наибольшего предела взвешивания (п. 8.1), дискретности (п. 8.2) и положения рабочей точки на характеристике (п.8.3).

Калибровки 8.1 ~ 8.3 предполагают введение с помощью клавиатуры многозначных чисел. Правила ввода заключаются в следующем. Клавиша PRINT увеличивает на единицу последнюю цифру (младший разряд) высвечиваемого числа. Клавиша ZERO сдвигает число вправо на один разряд, а в младшем разряде устанавливается нуль; иначе говоря, все число увеличивается в 10 раз. Если при вводе числа произошел сбой, несколькими нажатиями клавиши ZERO делают число 5-значным, а при следующем нажатии оно обнулится (нуль высвечивается в младшем разряде). Теперь введите клавишей PRINT цифру старшего разряда, затем (после нажатия ZERO) следующую и т.д. Введя все число, нажмите клавишу LIGHT для его запоминания и перехода к следующей калибровке.

□ Для входа в режим калибровки следует при нажатой клавише ZERO включить питание весов выключателем ОN/OFF: на лисплее при этом высветится налпись <

Для входа в режим калибровки следует при нажатой клавише ZERO ◀ включить питание весов выключателем ON/OFF; на дисплее при этом высветится надпись < CAS>, которая заменится при отпускании клавиши ZERO ◀ на сообщение < - - - >. В это время следует нажать клавишу kg/lb. Тогда высветится следующая последовательность: < CAL >, < t1.22 >, < CAL 01 > и введенное ранее значение наибольшего предела взвешивания, например < 5000 >. После окончания какой-либо калибровок переход к следующей осуществляется автоматически или по нажатии клавиши LIGHT.

8.1. Установка наибольшего предела взвешивания (НПВ)

После высвечивания на дисплее наибольшего предела взвешивания его новое значение в килограммах допускается вводить (в случае необходимости) в интервале от 1 до 99999 согласно изложенным выше правилам. Для его сохранения в памяти устройства нажимают клавишу LIGHT, после чего происходит переход к следующей калибровке.

8.2. Установка дискретности

Завершив с помощью клавиши LIGHT предыдущую калибровку, переходят к следующей; на индикаторе автоматически выводится сначала надпись < CAL 2 >, а затем — прежнее значение дискретности. Его новое значение выбирают в килограммах из ряда: 0,0002; 0,0005; 0,001; 0,002; 0,005; 0,01; 0,02; 0,05; 0,1; 0,2; 0,5; 1; 2; 5; 10; 20; 50; 100 путем нажатия клавиши PRINT ▲ соответствующее число раз. С каждым нажатием дискретность увеличивается на одну позицию ряда. При достижении значения 100 цикл повторяется вновь. Устанавливаемая дискретность не должна быть меньше, чем 0,0001 от величины НПВ.

8.3. Выбор рабочей точки для калибровки

При калибровке весов, т.е. выборе коэффициента усиления электронной схемы, может оказаться, что число эталонных гирь не достаточно для калибровки при наибольшем пределе взвешивания. В этом случае можно сместить рабочую точку на нагрузочной характеристике весов и калибровать при меньших нагрузках. Конечно, при этом гарантии на правильную калибровку нет, и необходимо после этого весы поверять. Допускается устанавливать новую рабочую точку в пределах от 1 до 99 999 кг в абсолютном выражении или от 1 до 100% от наибольшего предела взвешивания в относительном. Если она установлена менее, чем на 1 %, появляется сообщение об ошибке < Err 22 >, а если выше наибольшего предела взвешивания - сообщение об ошибке < Err 23 >.

Правила ввода данной характеристики такие же, как в п. 7.1.

8.4. Калибровка нуля

Завершив с помощью клавиши LIGHT предыдущую калибровку, переходят к следующей; на индикаторе автоматически выводится сначала надпись < CAL 4 >, а затем — надпись <ULoAd >, означающая требование освободить платформу весов от груза. Затем на дисплее высветится "значение нуля" в единицах внутреннего разрешения. После этого нажимают клавишу LIGHT. При успешном прохождении калибровки на дисплее появляется промежуточное сообщение в виде < - - - - >, затем завершающее сообщение < GOOd>, после чего происходит автоматический переход к следующей калибровке. Если положение нулевой точки на характеристике было выбрано слишком низко, на дисплее появляется сообщение об ошибке < Err 27 >, а если слишком высоко - то < Err 26 >.

8.5. Калибровка коэффициента усиления

После высвечивания на индикаторе надписи < CAL 5 > появится сообщение < LoAd >, означающее, что надо установить на платформу весов груз согласно п. 7.3, а затем на дисплее высветится "значение нуля" в единицах внутреннего разрешения. После установки груза показания увеличатся. Затем следует нажать клавишу LIGHT. При успешном прохождении калибровки на дисплее последовательно появляются: промежуточное сообщение в виде < - - - - >, завершающее сообщение < GOOd >, показания веса, сообщение < sAvE >. Снимите калибровочный груз и нажмите клавишу LIGHT.

На этом калибровка завершается и весы переходят в режим взвешивания.

ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

Осмотры и все виды ремонтов выполняются изготовителем или специализированнным предприятием, имеющим с изготовителем договор.

При эксплуатации весов потребителем должно производиться ежедневное (межосмотровое) обслуживание весов.

ХАРАКТЕРНЫЕ НЕИСПРАВНОСТИ И СПОСОБЫ ИХ УСТРАНЕНИЯ

Во время работы весов производится их автоматическое диагностирование и при обнаружении дефектов на индикаторе дисплея появляется сообщение $\langle Err~XX \rangle$, по номеру которого XX устанавливается тип неисправности.

СООБ-	ОПИСАНИЕ НЕИСПРАВНОСТИ	РЕКОМЕНДАЦИИ
ЩЕНИЕ	пеисправности	
<err 01=""></err>	Колебания нагрузки слишком	Установите весы на ровное место
	велики	
<err 02=""></err>	Не подсоединен тензодатчик или	Проверьте полярность сигнала
	неисправен АЦП	
<err 06=""></err>	Принтер не подключен	Проверьте подсоединение принтера
<err 08=""></err>	Клавиша ZERO не срабатывает	Дождитесь стабилизации
<err 09=""></err>	Дрейф показаний при пустой	Нажмите клавишу ZERO
	платформе	·
<err 13=""></err>	Масса тары превышает наиболь-	Установите более легкую тару
	ший предел взвешивания	
<over></over>	Перегрузка	Уменьшите нагрузку на весы

ГОСУДАРСТВЕННЫЙ КОМИТЕТ РОССИЙСКОЙ ФЕДЕРАЦИИ ПО МЕТРОЛОГИИ И СТАНДАРТИЗАЦИИ (ГОССТАНДАРТ РФ)

СИБИРСКИЙ ГОСУДАРСТВЕННЫЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ МЕТРОЛОГИИ (ГЦИ СИ СНИИМ)

		УТВЕРЖДАЮ
Дир	ектор I	ГЦИ СИ СНИИМ
		В.Я.Черепанов
«	»	2000 г.

Методические указания

Государственная система обеспечения единства измерений

ВЕСЫ ПОКОЛЕСНОГО ВЗВЕШИВАНИЯ АВТОМОБИЛЯ

типа RW (фирмы «CAS Corporation Ltd» Ю. Корея)

Методика поверки

(приложение к эксплуатационной документации)

1. ОБЛАСТЬ ПРИМЕНЕНИЯ

Настоящие методические указания распространяются на весы поколесного взвешивания автомобиля типа RW фирмы «CAS Corporation Ltd» Ю. Корея (в дальнейшем «весы») и устанавливают методику их периодической поверки и поверки после ремонта. Межповерочный интервал не должен превышать одного года.

2. НОРМАТИВНЫЕ ССЫЛКИ

В настоящих методических указаниях использованы ссылки на следующие стандарты и нормативные документы:

ГОСТ 7328 –82 Е. «Меры массы общего назначения и образцовые. Технические условия»;

Пр 50.2.006-94 «ГСИ. Порядок проведения поверки средств измерений»;

Пр 50.2.007-94 «ГСИ. Поверительные клейма»;

3. ОПЕРАЦИИ И СРЕДСТВА ПОВЕРКИ

3.1. При проведении поверки должны быть выполнены операции и применены средства, указанные в таблице.

средетва, указанные в таблице.		
Наименование операции	Номер пункта методичес	Средства поверки, их нормативно-технические характеристики
1. Внешний осмотр	6.1	
2. Опробование	6.2	
3. Определение метрологических	6.3	Эталонные гири 4-го разряда по
характеристик:		ГОСТ 7328 или силоизмеритель-
- проверка погрешности устройства	6.3.1	ные установки. Суммарная погре-
установки на ноль		шность силоизмерительных сред-
- определение погрешности	6.3.2	ств поверки должна быть не более
нагруженных весов		0,5 пределов допускаемой погреш-
		ности поверяемых весов.
- определение порога	6.3.3	Эталонные гири 4-го разряда
чувствительности весов		по ГОСТ 7328.

4. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

При проведении поверки должны соблюдаться общие правила техники безопасности в соответствии с требованиями ГОСТ 12.2.003, а также требования безопасности, указанные в эксплуатационной документации на применяемые при поверке средства измерений.

5. УСЛОВИЯ ПОВЕРКИ И ПОДГОТОВКА К НЕЙ

- 5.1 Операции по всем пунктам настоящей методики проводят при любых сочетаниях значений влияющих факторов, соответствующих рабочим условиям эксплуатации поверяемых весов.
- 5.2 Применяемые при поверке средства измерений должны иметь действующий срок поверки.

6. ПРОВЕДЕНИЕ ПОВЕРКИ

6.1 Внешний осмотр

При внешнем осмотре должно быть установлено:

- комплектность поверяемых весов;
- отсутствие видимых повреждений весов;
- целостность соединительных кабелей (при одновременной поверке 2-х или более соединенных весов);
 - наличие маркировки по МОЗМ МР 76;
- соответствие площадки для установки весов и подъездных дорожных участков требованиям эксплуатационной документации.

6.2 Опробование

При опробовании весов выполняют тестирование весов, в соответствии с разделом 5 «Тестирование» руководства по эксплуатации:

- проверка кодов клавиатуры,
- проверка высвечивания дисплея,
- проверка тензодатчиков и АЦП-преобразователя,
- проверка интерфейса RS-232C и принтер.

6.3 Определение метрологических характеристик

Определяют погрешность устройства установки на нуль, погрешность нагруженных весов и порог чувствительности весов.

Метрологические характеристики определяют методом непосредственной оценки при помощи эталонных гирь 4-го разряда или нагружением весов на силоизмерительной установке соответствующего класса точности.

6.3.1 Проверка погрешности устройства установки на ноль

Погрешность устройства установки на ноль определяют перед определение других метрологических характеристик нагруженных весов. Для этого установить нуль устройством установки нуля при пустом грузоприемном устройстве и помещать последовательно эталонные гири массой по 0,1 е на грузоприемное устройство до тех пор, пока при какой-то нагрузке ΔL показание весов не увеличится на 1 е. Погрешность устройства установки на ноль подсчитывается по формуле: E=0,5 е- ΔL , и не должна превышать значения $\pm 0,25$ е.

6.3.2 Определение погрешности нагруженных весов

Погрешность определяют при нагружении и разгружении весов нагрузками равными НмПВ, 50(200)е и НПВ.

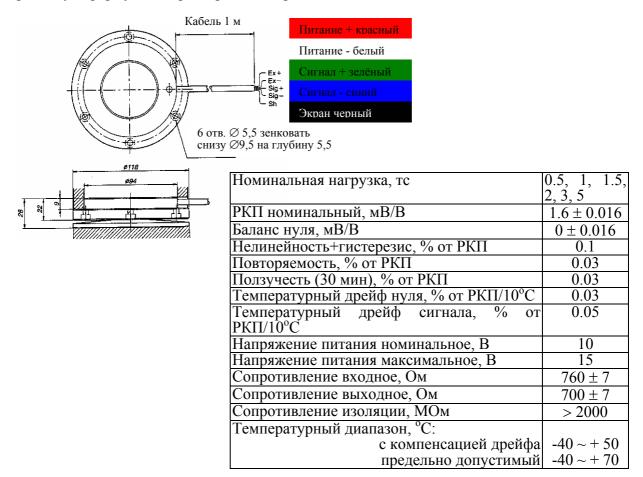
Погрешность весов не должна превышать значений, указанных в эксплуатационной документации.

6.3.3 Определение порога чувствительности весов

Порог чувствительности весов определяют не менее чем при трех значениях нагрузки, включая значения НмПВ и НПВ путем плавного снятия или установки на грузоприемное устройство гирь, равных по массе от 1 е до 1,4 е. При этом, первоначальное показание весов должно измениться на 1 е.

7. ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

7.1 Положительные результаты поверки оформляют в соответствии с требованиями ПР 50.2.006 нанесением оттиска поверительного клейма в соответствие с требованиями ПР 50.2.007 в месте, предусмотренном эксплуатационной документацией, и выдачей свидетельства о поверке. Результаты поверки заносят в паспорт или специальный журнал.


7.2 При отрицательных результатах поверки весы к применению не допускаются, оттиск поверительного клейма гасят, свидетельство о предыдущей поверке аннулируют и выдают извещение о непригодности в соответствие с требованиями ПР 50.2.006 с указание причин непригодности.

Начальник отдела №31	А.В. Назаренко	
Ст. научный сотрудник	Э.В.Варгасова	
Ст. научный сотрудник	С.П. Тюменцева	

Приложение 2

ТЕНЗОДАТЧИКИ

В составе весов входят тензометрические датчики типа СРА, имеющие цилиндрическую форму. Их характеристики представлены в таблице.

В таблице справа показано количество тензодатчиков Q, встроенных в каждую платформу, и номинальная нагрузка L_{nom} на них:

Модель	Нагрузка	Кол-во
	L _{nom} , кг	Q, шт
RW-05S	2	4
RW-10S	3	6
RW-05L	5	4
RW-10L	3	5

Использование большого числа датчиков на одной платформе имеет целью уменьшить номинальную нагрузку, приходящуюся на один датчик. В предположении идеальной равномерности распределения нагрузки по датчикам получаем максимальную нагрузку на один датчик, равную $H\Pi B/Q$, что и позволяет уменьшить L_{nom} . Если учитывать только мультипликативную составляющую погрешности измерений, то в результате будет иметь место статистическое увеличение точности измерений в \sqrt{Q} раз. Однако в действительности эффект может оказаться обратным. Источники неравномерности распределения нагрузки по датчикам могут быть различными:

- 1. Геометрическое положение центра приложения нагрузки на платформе в зависимости от места остановки колеса. Если равнодействующая нагрузки отклоняется от центра платформы, то распределение усилия по датчикам будет зависеть от угловой жесткости весов по отношению к поворотам из плоскости платформы.
- 2. Динамика наезда съезда колеса на платформу. Даже если колесо всегда будет останавливаться точно в центре платформы, нельзя при выборе датчика принимать за номинальную нагрузку величину НПВ/Q. Дело в том, что при каждом взвешивании автомобиля в момент наезда или съезда колеса нагрузку воспринимают не сразу все датчики, а только те из них, которые расположены на передней (при наезде) или задней (при съезде) линии. Это может быть 2 датчика (для модели RW-05P) или 3 (модели RW-10P, -15P). Поэтому выбор нагрузки $L_{\text{пот}}$, равной НПВ/Q, просто приведет к разрушению датчика. Запас прочности тензодатчиков фирмы КАС обычно составляет 1,5.
- 3. Допуск на установку датчиков по высоте. Чтобы нагрузка распределялась равномерно, опорные поверхности всех датчиков должны лежать в одной плоскости, причем допуск на установку датчиков по высоте должен быть существенно меньше осадки датчика, величины в доли миллиметра. Более того, площадка для установки весов также должна иметь допуск на плоскостность такого же порядка.

На самом деле в технических характеристиках на весы указаны требования к площадке: плоскостность — до 3 мм, уклон — до 1° . Но если центр приложения нагрузки будет приходиться на датчик, под которым окажется локальный выступ 3 мм, то основная часть нагрузки будет восприниматься только этим датчиком. Поэтому, чтобы не произошло разрушения датчиков, номинальную нагрузку на датчик следует устанавливать равной НПВ. В результате статистически происходит не увеличение, а уменьшение точности измерений в \sqrt{Q} раз. Даже если учитывать только механическую составляющую погрешности датчиков СРА, равную 0,001 для нелинейности и гистерезиса, получаем, что точность платформы составит $1000/\sqrt{Q}$. Число поверочных делений уменьшается с 1000 до $400 \sim 500$.

Укажем также, что уклон весоизмерительной площадки в 1° представляется также излишне большой величиной. Он приведет к появлению боковой составляющей нагрузки, равной $\sin 1^{\circ} \cong 0,02$ от приложенной нагрузки. Так как в конструкции не предусмотрены средства компенсации боковых нагрузок, проблематичным становится обеспечение декларированной точности 0,001 измерения вертикальной составляющей.

Возможно, по указанным причинам фирма — изготовитель рекомендует использовать весы только для выравнивания осевых нагрузок в автомобиле или для контроля въезда — выезда автомобиля.